• Home
  • Category: Agile

Agile SE Part Three: Agile Contracts and the Downfall of Requirements

Welcome to a series on Agile Systems Engineering, exploring the practical aspects of this emerging approach. If you didn’t see them already, check out Part 1: What is Agile, Anyway? and Part 2: What’s Your Problem?

The antithesis of agile

Requirements are a poor way to acquire a system. They’re great in theory, but frequently fail in practice. Writing good requirements is hard, much harder than you’d think if you’ve never had the opportunity. Ivy Hooks gives several examples of good and bad requirements in the paper “Writing Good Requirements“. Poor requirements can unnecessarily constrain the design, be interpreted incorrectly, and pose challenges for verification. Over-specification results in spending on capabilities that aren’t really needed while under-specification can result in a final product that doesn’t provide all of the required functions.

If writing one requirement is hard, try scaling it up to an entire complex system. Requirements-based acquisition rests on the assumption that the specification and statement of work are complete, consistent, and effective. That requires a great deal of up-front work with limited opportunity to correct issues found later. A 2015 GAO report found that “DoD often does not perform sufficient up-front requirements analysis”, leading to “cost, schedule, and performance problems”.

And that’s just the practical issue. The systematic issue with requirements is that the process of analyzing and specifying requirements is time consuming. One of the more recent DoD acquisition buzzphrases is “speed of relevance”. Up-front requirements are antithetical to this goal. If it takes months or even years just to develop those requirements, the battlefield will have evolved before a contract can be issued. Add years of development and testing, and then we’re deploying last-generation technology geared to meeting a past need. That’s the speed of irrelevance.

Agile promises a better approach to deliver capabilities faster. But we have to move away from large up-front requirements efforts.

Still from Back to the Future Part 2 with subtitles changed to: Requirements? Where we're going, we don't need requirements!

Agile contracting

Traditional requirements-based acquisition represents a fixed scope, with up-front planning to estimate the time and cost required to accomplish that scope. Pivoting during the development effort (for example, as we learn more about what is required to accomplish the mission) requires re-planning with significant cost and schedule impacts. The Government Accountability Office (GAO) conducts annual reviews of Major Defense Acquisition Programs (MDAPs). The most recent report analyzing 85 MDAPs found that they have experienced over 54 percent total cost growth and 29 percent schedule growth, resulting in an average delay of more than 2 years.

Defense acquisition leaders talk about delivering essential capabilities faster and then continuing to add value with incremental deliveries, which is a foundational Agile and Dev*Ops concept. But you can’t do that effectively under a fixed-scope contract where the emphasis is on driving to that “complete” solution.

The opposite of a fixed-scope contract is a value stream or capacity of work model. Give the development teams broad objectives and let them get to work. Orient the process around incremental deliveries, prioritize the work that will provide the most value soonest, and start getting those capabilities to the field.

triangle with vertices labeled "SCOPE", "COST", and "TIME", the center is the word "QUALITY"
Project Management Triangle

“But wait,” you say, “doesn’t the project have to end at some point?” That’s the best part of this model. The developer’s ‘fixed’ cost and schedule keeps getting renewed as long as they’re providing value. The contractor is incentivized to delivery quality products and to work with the customer to prioritize the backlog, or the customer may choose not to renew the contract. The customer has flexibility to adjust funding profiles over time, ramping up or down based on need and funding availability. If the work reaches a natural end point—any additional features wouldn’t be worth the cost or there is no longer a need for the product—the effort can be gracefully wrapped up.

You may be familiar with the project management triangle1. Traditional approaches try to fix all of the aspects, and very often fail. Agile approaches provide guardrails to manage all of the aspects but otherwise allow the effort to evolve organically.

Agile requirements

The most important aspect of agile approaches is that they shift requirements development from an intensive up-front effort to an ongoing, collaborative effort. The graphic below illustrates the difference between traditional and agile approaches. With traditional approaches, the contractor is incentivized to meet the contractual requirements, whether or not the system actually delivers value to the using organization or is effective to the end user.

Block diagram showing acquisition models. Traditional acquisition model includes using organization defining need to acquisition organization writing requirements for contractor organization delivering system to using organization deploying system to end users. Agile acquisition model includes using organization defining need to acquisition organization creating an agile contract to contractor, iterative feedback between contractor and end users, collaboration among all groups, the contractor continuous delivery to using organization which then deploys to end users.

In an agile model, the development backlog will be seeded with high-level system objectives. Requirements are developed through collaboration among the stakeholders and the development is shaped by iterative user feedback. The agile contract may have a small set of system requirements or constraints. For example, it may be a requirement for the system to comply with an established architecture or interface, meet particular performance requirements, or adhere to relevant standards. The key is that the provided set of requirements are as minimal as possible.

The requirements discovery, analysis, and development process is collaborative, iterative, and ongoing. It really isn’t extremely different from a traditional requirements decomposition, as requirements still have to be traceable from top-level objectives. A key difference is that the decomposition happens closer to the development, both in time and organization. The rationale and mission context for a requirement won’t get lost because the development team is involved in the process, so they understand the drivers behind the features they’ll be implementing.

I’m getting ahead of myself, though! In the next installment of this series we’ll look at cross-functional development teams, the role of Product Owner, and scaling up to a large project.

What are your experiences with agile contracts and agile requirements? Share your best practices, horror stories, and pitfalls to avoid below.

Agile SE Part Two: What’s Your Problem?

Welcome to a series on Agile Systems Engineering exploring the practical aspects of this emerging approach. If you didn’t see it already, check out Part 1: What is Agile, Anyway?

A faster horse

“If I had asked people what they wanted, they would have said faster horses.”

Apocryphally attributed to Henry Ford1

When people trot out that quote they’re often trying to make the point that seeking user feedback will only constrain the design because our small-minded <sneer>users</sneer> cannot possibly think outside the box. I disagree with that approach. User feedback is valuable information. It should not constrain the design, but it is essential to be able to understand and empathize with your users. They say “faster horse”? It’s your job to generalize and innovate on that desire to come up with a car. The problem with the “singular visionary” approach is that for every wildly successful visionary there are a dozen more with equally innovative ideas that didn’t find a market.

Sometimes, your research will even lead you to discover something totally unexpected which changes your whole perspective on the problem.

Here’s a great, real-world example from a Stanford Hacking for Defense class:

Customer ≠ user

Team Aqualink was tasked by their customer (the chief medical officer of the Navy SEALS) to build a biometric monitoring kit for Navy divers. These divers face both acute and long-term health impacts due to the duration and severe conditions inherent in their dives. A wearable sensor system would allow divers to monitor their own health during a dive and allow Navy doctors to analyze the data afterwords.

Team Aqualink put themselves in the flippers of a SEAL dive team (literally) and discovered something interesting: many of the dives were longer than necessary because the divers lacked a good navigation system. The medical concerns were, at least partially, really a symptom. What the divers truly wanted was GPS or another navigational system that worked at depth. Solving that root cause would alleviate many of the health concerns and improve mission performance, a much broader impact.

The customer was trying to solve the problem they saw without a deeper understanding of the user’s needs. That’s not a criticism of the customer. Truly understanding user needs is hard and requires substantial effort by engineers well-versed in user requirements discovery.

In the US DoD, the Joint Capabilities Integration and Development System (JCIDS) process is intended to identify mission capability gaps and potential solutions. The Initial Capabilities Document (ICD), Capability Development Document (CDD), and Key Performance Parameters (KPPs) are the basis for every materiel acquisition. This process suffers from the same shortcoming as the biometric project: it’s based on data that is often removed from the everyday experiences of the user. But once requirements are written, it’s very hard to change them even if the development team uncovers groundbreaking new insights.

The Bradley Fighting Vehicle

Still capture from The Pentagon Wars (1998)

The Bradley Fighting Vehicle was lampooned in the 1998 movie The Pentagon Wars2. By contrast, the program to replace the Bradley is being held up as an example of a new way of doing business.

Instead of determining the requirements from the outset, the Army is funding five companies for an 18-month digital prototyping effort. The teams were given a set of nine desired characteristics for the vehicle and will have the freedom to explore varying designs in a low-cost digital environment. The Army realizes that the companies may have tools, experiences, and concepts to innovate in ways the Army hasn’t considered. The Army is defining the problem space and stepping back to allow the contractors to explore the solution space.

Requirements myopia

System engineering for the DoD is built around requirements. The aforementioned JCIDS process defines the need. Based on that need, the acquisition command defines the requirements. The contractor bids and develops to those requirements. The test commands evaluate the system against those requirements. In theory, since those requirements tie back to warfighter needs, if we met the requirements we must have met the need.

But, there’s a gap. In the proposal process, contractors evaluate the scope of work and estimate how much effort will be required to complete the work. Sometimes this is based on concrete data from similar efforts in the past. Other times, it’s practically a guess. If requirements are incompletely specified, there could be significant latitude for interpretation. Even really good requirement sets cannot adequately capture the actual, boots-on-the-ground mission and user needs.

So, the contractor has bid a certain cost to complete the work based on their understanding of the requirements provided. If they learn more information about the user need but meeting that need would drive up the cost, they have three options:

  1. Ask the customer for a contractual change and more money to develop the desired functionality
  2. Absorb the additional costs
  3. Build to the requirement even if it isn’t the best way to meet the need (or doesn’t really meet it at all)

Obviously none of these solutions are ideal. Shelling out much more than originally budgeted reflects poorly on the government program office, who has to answer to Congress for significant overruns. Contractors will absorb some additional development cost from a “management reserve” fund built into their bid, but that amount is pretty limited. In many cases, we end up with option 3.

This is heavily driven by incentive structures. Contractors are evaluated and compensated based on meeting the requirements. Therefore, the contractor’s success metrics and leadership bonuses are built around requirements. Leaders put pressure on engineers to meet requirement metrics and so engineers are incentivized to prioritize the metrics over system performance. DoD acquisition reforms such as Human Systems Integration (HSI) have attempted to force programs to do better, but have primarily resulted in more requirements-focused bureaucracy and rarely the desired outcome.

I call this “requirements myopia”: a focus on meeting the requirements rather than delivering value.

Refocusing on value

It doesn’t make sense to get rid of requirements entirely, but we can adapt our approach based on the needs of each acquisition. I touched on this briefly in an earlier article, Agile Government Contracts.

One major issue: if we don’t have requirements, how will we know when the development is “done”? Ponder that until next time, because in the next post in this series we’ll dive into some of the potential approaches.

What are your experiences with requirements, good or bad? Thoughts on the “faster horse”, Team Aqualink’s pivot, or the Optionally Manned Fighting Vehicle (OMFV) prototyping effort? Sound off below!

Agile SE Part One: What is Agile, Anyway?

Welcome to a new series on Agile Systems Engineering exploring the practical aspects of this emerging approach.

What is “Agile”?

Agile is a relatively new approach to software development based on the Agile Manifesto and Agile Principles. These documents are straightforward. I will sum them up as stating that development should be driven by what is most valuable to the customer and that our projects should align around delivering value.

Yes, I’ve obnoxiously italicized the word value as if it were in the glossary of a middle school textbook. That’s because value is the essence of this discussion.

Little-a Agile

With a little-a, “agile” is the ability to adapt to a changing situation. This means collaboration to understand the stakeholder needs and the best way to satisfy those needs. It means changing the plan when the situation (or your understanding of the situation) changes. It means understanding what is valuable to the customer, focusing on delivering that value, and minimizing non-value add effort.

Big-A Agile

With a big-A, “Agile” is a software development process that aims to fulfill the agile principles. There are actually several variants that fall under the Agile umbrella such as Scrum, Kanban, and Extreme Programming. Each of these have techniques, rituals, and processes that supposedly lead to delivery of a quality product by helping teams focus on value-added work.

“Cargo Cult” Agile

“Agile” has become the hot-new-thing, buzzword darling of the U.S. defense industry. Did I mean Big-A or Little-a? It hardly matters. As contractors have rushed to promote their “new” development practices, they have trampled the distinction. The result is Cargo Cult Agile: following the rituals of an Agile process and expecting that the project will magically become more efficient and effective as a result. I wrote about this previously, calling it agile-in-name-only and FrAgile.

This isn’t necessarily the fault of contractors. They want to follow the latest best practices from commercial industry to most effectively meet the needs of their customers. But as anyone who has worked in the defense industry can tell you, the pace of change is glacial due to a combination of shear bureaucratic size and byzantine regulations. Most contracts just don’t support agile principles. For example, the Manifesto prioritizes “working software over comprehensive documentation” and one of the Principles is that “working software is the primary measure of progress”; but, most defense contracts require heaps of documentation that are evaluated as the primary measure of progress.

The upshot is that, to most engineers in the defense industry, “Agile” is an annoying new project management approach. Project management is already the least enjoyable part of our job, an obstacle to deal with so that we can get on with the real work. Now we have to learn a new way of doing things that may not be the most effective way to organize our teams and has no real impact on the success of the program. This has resulted in an undeserved bad taste for many of us.

If this is your experience with Agile, please understand that this is not the true intent and practice. The rest of this series will talk about how we achieve real agility.

Agile Systems Engineering

So far, I’ve only mentioned Agile as a software development approach. Of course, we’re here because Agile is being appropriated to all types of engineering, especially as “Agile Hardware Development” and “Agile Systems Engineering”. Some people balk at this; how can a software process be applied to hardware and systems? Here, the distinction between little-a agile and big-A Agile is essential. Software agile development evangelists have taken the values in the Manifesto and Principles and created Agile processes and tools that realize them.

It’s incumbent upon other engineering disciplines to do the same. We must understand the agile values, envision how they are useful in our context (type of engineering, type of solution, customer, etc.), and then craft or adapt Agile processes and tools that make sense. Where many projects and teams go wrong is trying to shoehorn their needs into an Agile process that is a poor fit, and then blaming the process.

Stay Tuned

In the rest of this series we’ll explore how agile SE can provide customer value, how our contracts can be crafted to enable effective Agile processes, and what those processes might look like for a systems engineering team. Stay tuned!

Have you worked on a project with “Cargo Cult Agile”? Have you adapted agile principles effectively in your organization? What other resources are out there for Agile systems engineering? Share your thoughts in the comments below.